Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy – Nature Biotechnology

May Be Interested In:Cassius Cleaves delivers cruel blow to Northampton Saints’ title defence


  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Witten, J., Hu, Y., Langer, R. & Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2307798120 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heymans, S. & Cooper, L. T. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat. Rev. Cardiol. 19, 75–77 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muramatsu, H. et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hodges, C. A. & Conlon, R. A. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis. 6, 97–108 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ensinck, M., Mottais, A., Detry, C., Leal, T. & Carlon, M. S. On the corner of models and cure: gene editing in cystic fibrosis. Front. Pharmacol. 12, 662110 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, S. H. & Engelhardt, J. F. Gene therapy for cystic fibrosis: lessons learned and paths forward. Mol. Ther. 29, 428–430 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruigrok, M. J. R., Frijlink, H. W., Melgert, B. N., Olinga, P. & Hinrichs, W. L. J. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Mol. Ther. Methods Clin. Dev. 20, 483–496 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, X. et al. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci. Adv. 8, eabn7162 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R. et al. Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv. Mater. 34, e2107506 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Guan, S., Darmstädter, M., Xu, C. & Rosenecker, J. In vitro investigations on optimizing and nebulization of IVT-mRNA formulations for potential pulmonary-based alpha-1-antitrypsin deficiency treatment. Pharmaceutics 13, 1281 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D.-D. et al. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol. Ther. 182, 1–14 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Woo, C. J. et al. Inhaled delivery of a lipid nanoparticle encapsulated messenger RNA encoding a ciliary protein for the treatment of primary ciliary dyskinesia. Pulm. Pharmacol. Ther. 75, 102134 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • da Silva, A. L. et al. Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Sci. Adv. 6, eaay7973 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeyer, F. et al. mRNA-mediated gene supplementation of Toll-like receptors as treatment strategy for asthma in vivo. PLoS ONE 11, e0154001 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2370001 (2023).

    Article 

    Google Scholar 

  • Lam, K. et al. Unsaturated, trialkyl ionizable lipids are versatile LNP components for therapeutic and vaccine applications. Adv. Mater. 35, 2209624 (2023).

    Article 
    CAS 

    Google Scholar 

  • Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e13 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soleimany, A. P. et al. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent. Sci. 7, 1356–1367 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ryan, K. A. et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat. Commun. 12, 81 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosen, B. H. et al. Animal and model systems for studying cystic fibrosis. J. Cyst. Fibros. 17, S28–S34 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, F. et al. Transgenic ferret models define pulmonary ionocyte diversity and function. Nature 621, 857–867 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boucher, R. C. Muco-obstructive lung diseases. N. Engl. J. Med. 380, 1941–1953 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01082-6 (2023).

  • Jiang, A. Y. et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364–375 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhou, K. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl Acad. Sci. USA 113, 520–525 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. M. et al. A systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angew. Chem. 133, 5912–5917 (2021).

    Article 

    Google Scholar 

  • Li, L. et al. A biomimetic lipid library for gene delivery through thiol-yne click chemistry. Biomaterials 33, 8160–8166 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heid, E. et al. Chemprop: a machine learning package for chemical property prediction. J. Chem. Inf. Model. 64, 9–17 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, Z. et al. A multidimensional approach to modulating ionizable lipids for high-performing and organ-selective mRNA delivery. Angew. Chem. Int. Ed. 62, e202310401 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, A. J. et al. Mucus strands from submucosal glands initiate mucociliary transport of large particles. JCI Insight 4, e124863 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostedgaard, L. S. et al. Lack of airway submucosal glands impairs respiratory host defenses. eLife 9, e59653 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tata, P. R. & Rajagopal, J. Plasticity in the lung: making and breaking cell identity. Development 144, 755–766 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah, V. S., Chivukula, R. R., Lin, B., Waghray, A. & Rajagopal, J. Cystic fibrosis and the cells of the airway epithelium: what are ionocytes and what do they do? Annu. Rev. Pathol. Mech. Dis. 17, 23–46 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Witten, J. & Collins, E. LNP ML. GitHub https://github.com/jswitten/LNP_ML (2024).

  • Guo, Z. et al. Diffusion models in bioinformatics and computational biology. Nat. Rev. Bioeng. 2, 136–154 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Reverberi, C. et al. Experimental evidence of effective human–AI collaboration in medical decision-making. Sci. Rep. 12, 14952 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Y., Golubovic, A., Xu, S., Pan, A. & Li, B. Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. J. Mater. Chem. B 11, 6527–6539 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, S. et al. Cholesterol-amino-phosphate (CAP) derived lipid nanoparticles for delivery of self-amplifying RNA and restoration of spermatogenesis in infertile mice. Adv. Sci. 10, 2300188 (2023).

    Article 
    CAS 

    Google Scholar 

  • Andries, O. et al. Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol. Pharm. 9, 2136–2145 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oyama, R. et al. An ionizable lipid material with a vitamin E scaffold as an mRNA vaccine platform for efficient cytotoxic T cell responses. ACS Nano 17, 18758–18774 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldman, R. L. et al. Understanding structure activity relationships of good HEPES lipids for lipid nanoparticle mRNA vaccine applications. Biomaterials 301, 122243 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Z., McCray, P. B. Jr & Engelhardt, J. F. Advances in gene therapy for cystic fibrosis lung disease. Hum. Mol. Genet. 28, R88–R94 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J.-A. et al. Gene therapy for cystic fibrosis: new tools for precision medicine. J. Transl. Med. 19, 452 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boucher, R. C. Status of gene therapy for cystic fibrosis lung disease. J. Clin. Invest. 103, 441–445 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulrich, M. et al. Alveolar inflammation in cystic fibrosis. J. Cyst. Fibros. 9, 217–227 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, C.-R., Bahmed, K. & Kosmider, B. Impaired alveolar re-epithelialization in pulmonary emphysema. Cells 11, 2055 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferguson, L. T. et al. Mechanisms by which liposomes improve inhaled drug delivery for alveolar diseases. Adv. NanoBiomed Res. 3, 2200106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, M. et al. Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus. Sci. Rep. 9, 1971 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, Y. et al. Repeat dosing of AAV2.5T to ferret lungs elicits an antibody response that diminishes transduction in an age-dependent manner. Mol. Ther. Methods Clin. Dev. 19, 186–200 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, Y. et al. Immunosuppression reduces rAAV2.5T neutralizing antibodies that limit efficacy following repeat dosing to ferret lungs. Mol. Ther. Methods Clin. Dev. 29, 70–80 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Share facebook pinterest whatsapp x print

    Similar Content

    'Self-evolving' virtual hospital concept in China to go public in 2025
    ‘Self-evolving’ virtual hospital concept in China to go public in 2025
    Sonic the Hedgehog 4 movie confirmed by Paramount
    Sonic the Hedgehog 4 movie confirmed by Paramount
    UnitedHealthcare names a new CEO after Brian Thompson's fatal shooting
    UnitedHealthcare names a new CEO after Brian Thompson’s fatal shooting
    Former Plooto CEO Hamed Abbasi
    Former Plooto CEO Hamed Abbasi on trial for alleged sexual assault
    Trump Attorney General Pick Refuses to Answer One Telling Question
    Trump Attorney General Pick Refuses to Answer One Telling Question
    Musk and Trump spend an unhinged Christmas with their echo chambers
    Musk and Trump spend an unhinged Christmas with their echo chambers
    The Big Picture: News That Defines Our Time | © 2024 | Daily News